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Abstract-Finite element analysis was used to study the fracture toughening ofa ceramic by a stress­
induced dilatant transformation of second phase particles. The finite element method was based on
a continuum theory which modelled the composite as a subcritical material. Transient crack growth
was simulated in the finite element mesh by a nodal release technique. The crack's remote tensile
opening load was adjusted to maintain the near-tip energy release rate at the level necessary for
crack advance. The transformation zone surrounding the crack developed as the crack propagated
through the composite. Resistance curves were computed from the analysis; the results confirm that
during crack advance maximum toughness is achieved before steady state is reached. Diagrams of
each transformation zone and R-curve are provided to expedite comparison with experimental data.

INTRODUCTION

The fracture toughness of certain ceramics can be greatly enhanced by the presence of
particles which undergo a stress-induced martensitic transformation (Evans and Heuer,
1980; Evans and Cannon, 1986; Green et al., 1989) such as takes place in systems containing
stabilized zirconia (zr02) particles, Examples include partially stabilized zirconia (PSZ)
and zirconia-toughened alumina (ZTA). At sufficiently high stress, the particles of such
systems undergo a transformation from the tetragonal to the monoclinic phase which is
accompanied by a volume increase of 4%. Since the transformation is stress induced, a
zone of material containing transformed particles surrounds the crack tip after it has been
stressed. The volume expansion of the particles in this zone will cause eigenstresses which
will tend to close the crack and lower the stress intensity factor at the tip, This shielding
mechanism means that a higher applied load than otherwise, and therefore an apparently
higher stress intensity factor, is required to propagate the crack.

Transformation toughening was first modelled by McMeeking and Evans (1982) and
Budiansky et al. (1983). The phenomenology of phase transformation was represented by
the macroscopic hydrostatic stress versus dilatation strain behavior shown in Fig. I. At the
critical stress ~, phase transformation commences. If the slope B of the stress-strain
curve during transformation is below -4G/3, where G is the shear modulus, then the
transformation continues spontaneously and immediately to completion (Budiansky et al.,
1983). In fact, points on the stress-strain curve between 1 and 2 are excluded as unstable
and the state jumps on transformation from 1 to the segment between 4 and 3. This
situation has been termed supercritical. In the model of McMeeking and Evans, the phase
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Fig. 1. The hydrostatic material behavior of a ceramic containing particles which undergo a stress­
induced phase transformation.
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transformation was supercritical and the volume increase due to transformation was
asymptotically small. The transformation zones were also asymptotically small. By cal­
culating the amount ofcrack tip shielding, they obtained estimates of the effective composite
R-curve. the toughness value which rises as the crack grows. Eventually. a maximal steady­
state toughness value develops after an amount of crack growth which is about three
transformation zone widths.

Budiansky et al. (1983) considered supercritical and also subcritical materials in steady­
state crack advance only. In the subcritical case, with jj > - 4Gj3, the phase change occurs
gradually and the material can remain stably in a state in which the particles are only
partially transformed. As a result, points in Fig. I between I and 2 are stable and the
material moves gradually from I to 2 as strain increases. If the strain decreases (unloading)
while the material is between 1 and 2, the state follows the line with slope B through the
current location as shown in Fig. I. In addition, Budiansky et al. also accounted accurately
for the perturbation of the transformation zone size and shape due to the stresses induced
by the transformation itself. Using finite element analysis, they calculated steady-state
fracture toughnesses including cases where the volume increase from the transformation
was quite large. Rose (1986) and Amazigo and Budiansky (1988) have provided additional
analyses of steady-state toughening for dilatant transformations.

Stump and Budiansky (1989) have recently provided a more accurate estimate of the
R-curve for a crack advancing in supercritically transforming material. The problems were
solved numerically by means of an integral equation. The transformation zones evolved as
the crack advanced and the remote load was adjusted to maintain the stress intensity factor
at the critical constant value at the crack tip. Their solutions show that the maximum
fracture toughness occurs after a finite amount of crack advance, and that this maximum
can be significantly higher than the steady-state fracture toughness which develops later.
The peak fracture toughness is associated with a transiently wider transformation zone.
The result indicates that the amount of effective toughening is underestimated by the later
steady-state value since the system must be forced to grow through the peak toughness
state. The steady-state estimate generally underpredicts experimental data (Evans and
Cannon, 1986) so the new predictions tend to bring the theory into better agreement.
Furthermore, R-curves with peaks in the toughness have been reported by Swain (1983)
and Swain and Hannink (l984).

The purpose of the calculations performed for this paper is to consider the transient
behavior of a crack advancing in a material which transforms subcritically. Experimental
evidence indicates that the transformation zones surrounding a crack tip tend to be diffuse
or partially transformed, indicating a subcritical transformation. Finite element analysis is
used to solve the problem of a semi-infinite crack growing in a transforming material under
Mode I loading and plane strain conditions. Crack growth in the finite element mesh is
modelled using a nodal release technique; the transformation zone develops as the crack
advances. Resistance curves are computed for different purely dilatant transformation
strains and the results are compared with the steady-state analysis of Budiansky et al.
(1983). A near critical case almost equivalent to the supercritical analysis by Stump and
Budiansky (1989) was also analyzed for comparison. Extensive documentation of each
solution is provided so that comparisons with experimental data can be made more easily.

CONSTITUTIVE RELATIONS

In this section we describe the constitutive relations used to model transformation
toughened composites. Developed by Budiansky et al. (1983), the model assumes that the
transformation zone contains many particles and thus a continuum description of the
composite can be formulated. The composite material is isotropic and consists of a linear
elastic isotropic matrix containing linear elastic isotropic particles which undergo an
irreversible dilatant transformation.

Since the transformation is purely dilatant, the macroscopic shear response is entirely
linear elastic with modulus G, which will depend on the composite properties of the material.
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Thus the deviatoric stress-strain relationship for the composite is
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(I)

(2)

where (1' is the deviatoric part of the macroscopic stress and 8' is the deviatoric part of the
macroscopic strain.

The dilatant behavior of the composite is depicted in Fig. I, and can be represented
by

Um
Bkk =B +0

where Bkk denotes the total dilatation; Um is the hydrostatic part of the stress equal to ukd3;
B is the bulk modulus for the material; and 0 is the current dilatation due to particle
transformation in a macroscopic element of the composite material. (Einstein summation
is used on repeated indices throughout.)

When the strain Bkk = u';,,/ B is exceeded, locally particles change phase to some extent.
When all of the particles have transformed locally, the macroscopic dilatation 0 is equal to
OT. In a material in which the elastic moduli of the particles are identical with those of the
matrix OT = cOJ, where c is the volume fraction of particles and OJ is the free dilatation of
an individual particle (4% in the case of zirconia) (Budiansky et al., 1983). However,
McMeeking (1986) has shown that in binary elastic composites, OT = FcOJ, where F is a
factor which depends on the ratios of elastic moduli.

When the material is partially transformed into subcritical materials, the incremental
dilatation during loading (Bkk > 0) and due to transformation is (Budiansky et al., 1983).

(3)

when

Since the phase transformation is assumed irreversible, 0 remains constant during
unloading (Bkk < 0) in all cases. In the critical and supercritical case, eqn (3) is replaced by

(4)

where <>0 is a Dirac delta function.

BOUNDARY VALUE PROBLEM

The problem of a very long crack growing in plane strain with a very small zone of
phase transforming particles (see Fig. 2) was solved using the finite element method.

NEAR TIP REGION

Fig. 2. The boundary value problem of a semi-infinite crack subject to a mode I tensile opening
load.
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Displacement boundary conditions corresponding to a Mode I linear elastic plane strain
field were applied around the outer perimeter of the domain. The magnitude of the applied
load is characterized by KAPP

, the Mode I elastic stress intensity factor. As shown in Fig.
2, material near the tip transforms due to the stress intensification generated by the crack.
A zone of material which has completely transformed (0 = f)T) surrounds the crack tip. This
core region is incrementally linear elastic with a permanent residual strain. Consequently, the
stress field at the crack tip has an r- I 1 singularity and is characterized by a stress intensity
factor KTIP

• In the subcritical case, the region of purely transformed material is surrounded
by a zone ofmaterial which is partially transformed (0 < OT). In the critical and supercritical
cases, partially transformed material does not exist and 0 jumps from zero to OT across the
zone perimeter.

For a stationary crack with monotonically increasing K APP no unloading occurs and
the J-integral of Rice (1968) is path independent (Budiansky et al., 1983). As a result,
KTIP = KAPP and thus, prior to any crack growth. there is no shielding (McMeeking and
Evans, 1982; Budiansky et al., 1983). The crack will commence growing when KTIP = ~,

the fracture toughness of the composite in the crack tip state, i.e. with pretransformed
particles. Equivalently, crack growth commences when KAPP = ~.

As the crack propagates and a wake of transformed material develops, KT1P decreases
compared to KAPP due to shielding. To maintain crack growth, KAPP must be continually
adjusted so that KT1P equals ~. KAPP is the effective fracture toughness of the composite
material and the R-curve is its graph versus the amount of crack growth da.

Finally, all length scales in the moving crack tip problem were normalized by L, where
L is defined by

L = ~ [KC(I + V)J2
9n 0':;'

(5)

Physically, L is the distance on the XI-axis from the tip ahead to the boundary of the
nominal transformation zone for the stationary crack with KAPP = ~. The solutions depend
on the strength of the transformation which is characterized by the nondimensional par­
ameter 0), where

0) = EO
T [1 +vJ.

0':;' I-v
(6)

FINITE ELEMENT SOLUTIONS

The finite element method used to solve these problems has been described by Hom et
af. (1989). The method was incremental with the load, KAPP

, adjusted in steps as necessary
to tend to maintain KT1P equal to K C

• After each adjustment of the load, a successive
approximation iteration was carried out until satisfactory convergence of the solution was
achieved. When KT1P equaled K C

, the crack tip node was released incrementally to advance
the crack, with iterations carried out as necessary. Thereafter, KAPP was again adjusted in
steps to return KTIP to K C and so on. The virtual crack extension method of Parks (1974,
1978) was used to calculate KT1P when necessary. The finite element mesh in Fig. 3 was
used for the calculations. The crack was grown from the point marked "STATIONARY
CRACK TIP" in that figure to near the point marked "MOVING CRACK TIP".

Attempts were made to compute results for the precisely critical case (jj = - 4G / 3).
However, it was found that the iterative procedure failed to converge. Without any change
to the load or geometry, the transformation zone simply expanded with each iteration.
Thus, no stable transformation zone size was ever established even for stationary cracks.
No way was found by us to avoid this in the algorithm directly. Instead, subcritical materials
were analyzed. Satisfactory convergence to a rather strict criterion was then achieved. Few
iterations were required when jj equaled zero but considerably more were necessary when
jj was smaller.
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Fig. 3. The finite element mesh used to examine a growing crack in a transformation-toughened
composite.

The subcritical results we obtained involved partially transformed material within the
zone. However, as jj approached -4G/3, the regions of partially transformed material
formed a narrow band around the outer perimeter of the zone. For a sufficiently small value
of jj and with appropriate choices of other parameters, this band was made narrower than
the distance between two neighboring integration stations in the finite element mesh. Thus,
at one integration station the material is untransformed and at the neighboring integration
station across the partially transformed band, the material is completely transformed. This
situation is as good as can be achieved anyway for the exactly critical material given the
discreteness of the mesh. The near critical case so calculated is numerically equivalent to
the exactly critical case for the given mesh. This equivalence was actually achieved for w = 5
with jj = - 1.3G in the mesh shown in Fig. 3. This solution was slow to converge (-- 50
iterations per step compared to five for jj = 0) and the amount ofcomputer time precluded
us from carrying out other near critical solutions.

The parameters of the problems were chosen so that at least 10 elements spanned the
transformation zone in the X2 direction. To check if the mesh layout was fine enough, (J"~

was made smaller to enlarge the zone, making L larger, equivalent to refining the mesh.
The combination E()T was reduced also to keep w fixed. The results of calculations then
carried out were identical to those performed in the effectively coarser mesh, confirming
that the mesh and calculation strategy were satisfactory.
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RESULTS FOR A GROWING CRACK

The problem of a crack in untransformed material growing and creating a trans­
formation zone was solved for various material parameters. These characteristic parameters
are the transformation strength w, Poisson's ratio \' (taken to be 0.3 throughout) and BIG.
Three sets of finite element computations were done with w = 5, 10 and IS. In each set of
calculations, cases were run for BIG = 0, - 0.5 and - 1.0. The calculation with w = 5 and
BIG = - 1.3 was also done for comparison with the calculations of Stump and Budiansky
(1989). In all cases the crack was propagated a distance of at least 8L.

Transformation zones
The transformation zone for the near critical case (BIG = - 1.3) with w = 5 and

da = II.4L is shown in Fig. 4. In this case, the layer of partially transformed material is
very thin and has not been shown in the figure. It is thinner than the distance between
neighboring integration stations in the finite element mesh-about 10% of the peak zone
height above the crack, h, shown in Fig. 4. Apart from this thin layer, the material inside
the zone has transformed completely. It is clear from the zone shape, that as the crack grew,
the zone first widened sharply and then gradually. After reaching a maximum width, the
zone narrowed sharply with growth and then appears to settle into a steady state.

In this case, the maximum zone height is hm = 1.06L and occurs after the crack has
grown a distance 3.7L. The finite element results show that the zone reaches a steady-state
height of 0.88L. The transient behavior of a crack growing in a supercritical material has
also been considered by Stump and Budiansky (1989). For w = 5, their results show that
the maximum zone height is 1.03L and occurs when da = 2.4L. Their computation also
predicts a steady-state zone height of 0.89L. Overall, the zones have very similar shapes. It
should be noted that between da = 2.4L and 3.7L. the zone height is almost steady, and
the discrepancy in the position of the zone width peak should be considered in that context.

The development of the transformation zone for the case BIG = 0 and w = 10 as the
crack tip moves to the right is shown in Fig. 5. The zone is shown for different crack lengths,
where da is the amount of growth which has taken place. The zones are depicted as contour
plots of the transformation dilatation O. As expected the crack tip is surrounded by a
region of fully transformed material which in turn is surrounded by a region of partially
transformed material. As the crack grows, the zone expands in height. The height of the
zone h reaches a maximum at 1.02L after the crack has propagated a distance 1.7L.
Thereafter, the zone narrows and when the crack reaches a steady state at around da = 8L,
the zone height in the steady-state region is smaller at 0.88L. The steady-state zone height
predicted by Budiansky et al. (1983) for subcritical material with BIG = 0 and w = 10 is
h = 0.84L.

Figure 6(a) shows the transformation zone when BIG = 0 and w = 5 after the crack
has propagated a distance of 8.6L. The fully transformed region in this case is larger than
the fully transformed region for the w = 10 case. However, the whole transformation region
observed for w = 5 is smaller than for w = 10, and the peak height is not as large. In this
case h reaches a maximum of 0.87L after the crack has propagated a distance 1.4L.
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Fig. 4. Transformation zone for the case (J) = 5 and fj / G = - 1.3 when lia = 11.4L.
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Fig. S. Development of the transformation zone for the case Q} = 10 and 11IG = 0 as the crack
grows; lia is the amount of crack growth. Contour levels are for fJlfJT•
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Fig. 6. Transformation zone contour plots of 8j8T for the case of w = 5 when 6a = 8.6L.
(a) BIG = 0, (b) BIG = -0.5, (c) BG = -1.0.

The steady-state zone height predicted by the finite element calculations is 0.81 L. The
computations of Budiansky et al. (1983) predicted the steady-state zone height as O.89L.
The transformation zones after the crack has propagated a distance 8.6L for w = 5 with
BIG = -0.5 and -1.0 are shown in Figs 6(b) and 6(c), respectively. It can be seen clearly
that for the smaller values of B there is a larger fully transformed zone compared to the
total zone size. The next figure in this series for w = 5 is that in Fig. 4 for B,'G = - 1.3
discussed already where there is no partially transformed zone.

Figures 7(a) and (b) are plots of the transformation zone after the crack has propagated
a distance 8.6L for w = 10 when BIG = -0.5 and -1.0, respectively. Comparison of Figs
7 with 6 shows that a larger relative dilatation w produces a larger final zone size even
though they start growing from nearly the same initial zone size. Finally, Figs 8(a,b,c) show
the transformation zones after the crack has propagated a distance 12.9L for the cases when
w = IS.

Table I shows the peak and steady-state zone heights and lia when the peak occurs
for each case calculated. The finite element results show that for a given L, the peak height
and the steady-state zone height are larger for stronger transformation strengths w. Also,
the crack must propagate further to reach both the maximum zone height and the steady­
state zone height for larger w. Similarly, the closer B is to the critical value of - 4GI3, the
larger is the peak zone height and the steady height. The latter comment applies except for
the near critical case BIG = - 1.3 where the trend seems to reverse. But when the material
is near critical, the distance the crack must propagate to achieve both the maximum zone
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Fig. 7. Transformation zone contour plots of O!OT for the case of w = 10 when &0 = 8.6L.
(a) B!G = -0.5. (b) A/G = -1.0.

height and the steady state is greater. Included in Table I for completeness are results taken
from Stump and Budiansky (1989) for the supercritical material.

Resistance curves
As mentioned earlier, the remote applied stress intensity factor was varied during crack

advance to maintain KT1P = KC at the crack tip. The R-eurves (KAPP verses l\a) for the case
when w = 5 are shown in Fig. 9. As expected, in each case the transformation zone shields
the crack tip and toughening is observed. The R-curves rise to a peak level associated with
the widest part of the zone. Thereafter, the R-curve falls as the zone narrows. The curves
then tend to settle down to a steady state. The relative amount of toughening is higher for
the lower values of Bbecause there is relatively more fully transformed material in the wake
zone. In addition, the peak toughening relative to the later steady-state value is more
pronounced when B is more negative.

After the crack has propagated a sufficient distance, the R-curve approaches an asymp­
totic value. This steady-state value of K APP corresponds to the steady-state region in the
transformation zone. For comparison, the dashed lines in Fig. 9 denote the toughnesses

Table I. Zone heights and fracture toughnesses predicted by the finite element analysis for subcritical material.
Results for B/G = -4/3 are from Stump and Budiansky (1989).

w 5 5 5 5 5 10 10 10 10 15 15 15 15
B/G 0.0 -0.5 -1.0 -1.3 -4/3 0.0 -0.5 -1.0 -4/3 0.0 -0.5 -1.0 -4/3

lia for peak h 1.4L 1.8L 2.1L 3.7L 2.4L 1.7L 2.1£ 3.1£ 5.6L 1.9L 2.7L 6.4L 18.4L
Peakh 0.87L 0.95L 1.I2L 1.00L 1.03L 1.02L 1.29L 1.67L 1.91L 1.11£ 1.69L 2.94L 5.11£
Steady-state h 0.81L 0.85L 0.97L 0.88L 0.89L 0.88L 1.05L 1.21L 0.97L 1.17L 1.73L
lia for peak

KAPP/Kc 2.9L 3.8L 4.5L 5.6L 5.5L 2.7L 3.9L 6.5L 10.3L 3.IL 4.4L 10.6L 29.4L
Peak KAPP!Xc 1.19 1.23 1.27 1.30 1.29 1.34 1.46 1.65 1.80 1.48 1.70 2.24 3.07
Steady-state

KAPP!Xc 1.19 1.22 1.26 1.27 1.26 1.33 1.43 1.63 1.46 1.62 2.15
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Fig. 8. Transformation zone contour plots of (JI(JT for the case of IJ) = 15 when Joa = l2.9L.
(a) DIG = O. (b) DIG = -0.5. (c) BiG = -1.0.
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Fig. 9. Resistance curves for the cases of IJ) 5. The steady-state results of Budiansky eI al. (1983)
are shown with dashed lines.
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predicted by the steady-state finite element analyses of Budiansky et al. (1983). The steady­
state toughness for the near critical material BIG = -1.3 predicted by our finite element
calculation agrees well with the steady-state analysis for critical and supercritical materials
which is exact. Furthermore, the peak toughness agrees well with the result of Stump and
Budiansky (1989). These results give us confidence in our numerical solutions. For the near
critical case (B / G = - 1.3) with w = 5, our finite element analysis predicts a maximum and
steady-state KAPP of 1.30Kc and 1.27Kc• respectively. The peak in KAPP occurs when the
crack has grown a distance 5.6L. For the supercritical material, Stump and Budiansky
(1989) predict a toughness value of 1.29Kc for the peak and the steady-state value is 1.26Kc

(Budiansky et al., 1983). Therefore, the zone contributions to toughness agree to within a
few per cent. Maximum KAPP in the results of Stump and Budiansky (1989) occurred when
!!aa = 5.5L.

The subcritical steady-state values of KAPP predicted by our transient finite element
analysis are higher than the steady-state values of Budiansky et al. (1983). For example,
when B= 0 the steady-state toughness predicted by the finite element analysis is 1.19KC
while the analysis of Budiansky et al. (1983) predicts 1.17KC. This means that our prediction
of the zone contribution is about 10% higher. The difference is unresolved.

For the subcritical material, the differences in the peak and steady-state toughnesses
are much smaller than the supercritical case. For B= 0 the finite element analysis shows
that both the peak and steady-state KAPP are indistinguishable at 1.19KC. Even for
BIG = -1.0, the peak KAPP is only 1.27KC compared to a steady-state value of 1.26KC.

Figure 10 shows the R-curves for the case when w = 10. Because the strength of the
transformation is greater, the toughnesses computed in these cases are higher than those
for w = 5. Also, the peak value for KAPP is more pronounced compared to the steady-state
value ofKAPP

• For BIG = - 1.0, the computation was only carried out until !!aa = 8.6£ and
a steady state was not developed. However, a peak value of KAPP of 1.65KC was calculated.
The dashed lines in Fig. 10 indicate the results of Budiansky et al. (1983). As in the case of
w = 5, the steady-state toughnesses predicted by our finite element analyses for w = 10 are
higher than those of the previous steady-state analysis. The R-curves for w = 15 are shown
in Fig. II. The higher toughnesses reflect the greater strength of the transformation. Again,
the steady-state toughnesses were higher than those predicted by Budiansky et al. (1983).

In addition to zone shape information, Table I shows the peak and steady-state
toughnesses and !!aa to reach peak toughness predicted by our finite element analysis for all
cases examined in this study. The numerical computations show that larger peak and steady
toughnesses are achieved when w is greater and jj is closer to critical, i.e. a stronger
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1.0 !--~--~--~--~---JL..--....L---L.--Jo
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transformation with more material fully transforming. Also, with increasing OJ and jj closer
to critical, the crack must grow a greater distance in terms of L to reach both the peak
toughness and the steady-state..

DISCUSSION

The finite element results presented in this paper indicate agreement between our
near critical solution and the accepted steady-state toughening estimate of previous work
(McMeeking and Evans, 1982; Budiansky et al., 1983; Stump and Budiansky, 1989). In
addition, the peak toughness predicted here for the near critical case by finite elements
agrees with the value obtained by Stump and Budiansky (1989) by another method. This
gives us confidence in our numerical results. It is worth noting that we have achieved
agreement with other results in the case in which we found convergence most difficult to
obtain, i.e. the near critical situation.

In contrast, it is found that our predictions for steady-state behavior of subcritical
materials disagree with the established results of Budiansky et al. (1983). We have checked
to see if lack of mesh refinement is the source of our problem, but that is not so. The
discrepancy remains unresolved.

Our calculations confirm the novel R-curve behavior found by Stump and Budiansky
(1989) in their calculations, namely that there is a peak in toughness prior to steady state.
Since the peak of the R-curve will determine the potential toughness of the material,
these new higher theoretical values are significant. The actual toughness measured in an
experiment will depend on the compliance of the system (McMeeking and Evans, 1982)
and this must be taken into account. However, it is interesting that theory has so far
underpredicted experiments on transformation toughening (Evans and Cannon, 1986) and
so the new results offer the prospect of the theory being brought into better agreement with
the data.

It has also been observed that the original very approximate prediction of an R-curve
by McMeeking and Evans (1982) has proved to be too stiff compared to the data (Heuer,
1987). It is likely that the R-curves now predicted by Stump and Budiansky (1989) and
Hom and McMeeking will tend to rectify this situation. Compared to the original R-curve
predicted by McMeeking and Evans (1982), those calculated in this case for OJ ;;: 5 as well
as that of Stump and Budiansky (1989) are more compliant. For higher values of OJ, the
new calculated R-curves are even more compliant so that the difference from the old curve
of McMeeking and Evans (1982) will be greater.
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A note of caution is called for, however. The ratio of Aa for peak KAPP / Kc divided by
peak h is typically in the range 3-5 (see Table I). Thus, the amount of crack growth to
reach peak toughness is only about 3-5 times the observed fully developed zone height.
This range is not very different from the original prediction (McMeeking and Evans, 1982)
that the R·curve would peak at about three zone heights.

It should be noted also that all the results obtained so far are for transformation zones
which are very small compared to specimen dimensions. No allowance has been made for
large·scale transformation.
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